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Abstract

Bayesian statistics is based on the intuitive idea that probability quantifies the degree of
belief in the occurrence of an event. The choice of name is due to the key role played by Bayes’
theorem, as a logical tool to update probability in the light of new pieces of information. This
approach is very close to the intuitive reasoning of experienced physicists, and it allows all kinds
of uncertainties to be handled in a consistent way. Many cases of evaluation of measurement
uncertainty are considered in detail in this report, including uncertainty arising from systematic
errors, upper/lower limits and unfolding. Approximate methods, very useful in routine appli-
cations, are provided and several standard methods are recovered for cases in which the (often
hidden) assumptions on which they are based hold.
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Introduction

These notes are based on seminars and minicourses given in various places over the last four
years. In particular, lectures I gave to graduate students in Rome and to summer students in
DESY in the spring and summer of 1995 encouraged me to write the ‘Bayesian primer’, which
still forms the core of this script. I took advantage of the academic training given at CERN at
the end of May 1998 to add some material developed in the meantime.

Instead of completely rewriting the primer, producing a thicker report which would have
been harder to read sequentially, I have divided the text into three parts.

e The first part is dedicated to a critical review of standard statistical methods and to a
general overview of the proposed alternative. It contains references to the other two parts
for details.

e The second part essentially reproduces the old primer, subdivided into chapters for easier
reading and with some small corrections.

e Part three contains an appendix, covering remarks on the general aspects of probability,
as well as other applications.

The advantage of this structure is that the reader can have an overall view of problems and
proposed solutions and then decide if he wants to enter into details.

This structure inevitably leads to some repetition, which I have tried to keep to a minimum.
In any case, repetita juvant, especially in this subject where the real difficulty is not under-
standing the formalism, but shaking off deep-rooted prejudices. This is also the reason why this
report is somewhat verbose (I have to admit) and contains a plethora of footnotes, indicating
that this topic requires a more extensive treatise.

A last comment concerns the title of the report. As discussed in the last lecture at CERN, a
title which was closer to the spirit of the lectures would have been “Probabilistic reasoning ... 7.
In fact, I think the important thing is to have a theory of uncertainty in which “probability” has
the same meaning for everybody: precisely that meaning which the human mind has developed
naturally and which frequentists have tried to kill. Using the term “Bayesian” might seem
somewhat reductive, as if the methods illustrated here would always require explicit use of
Bayes’ theorem. However, in common usage ‘Bayesian’ is a synonym of ‘based on subjective
probability’, and this is the reason why these methods are the most general to handle uncertainty.
Therefore, I have left the title of the lectures, with the hope of attracting the attention of those
who are curious about what ‘Bayesian’ might mean.

Email: dagostini@romal.infn.it
URL: http://www-zeus.romal.infn.it/~agostini/
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